Positivity-Preserving Numerical Schemes for Lubrication-Type Equations
نویسندگان
چکیده
Lubrication equations are fourth order degenerate diffusion equations of the form ht + ∇ · (f(h)∇∆h) = 0, describing thin films or liquid layers driven by surface tension. Recent studies of singularities in which h → 0 at a point, describing rupture of the fluid layer, show that such equations exhibit complex dynamics which can be difficult to simulate accurately. In particular, one must ensure that the numerical approximation of the interface does not show a false premature rupture. Generic finite difference schemes have the potential to manifest such instabilities especially when underresolved. We present new numerical methods, in one and two space dimensions, that preserve positivity of the solution, regardless of the spatial resolution, whenever the PDE has such a property. We also show that the schemes can preserve positivity even when the PDE itself is only known to be nonnegativity preserving. We prove that positivity-preserving finite difference schemes have unique positive solutions at all times. We prove stability and convergence of both positivitypreserving and generic methods, in one and two space dimensions, to positive solutions of the PDE, showing that the generic methods also preserve positivity and have global solutions for sufficiently fine meshes. We generalize the positivity-preserving property to a finite element framework and show, via concrete examples, how this leads to the design of other positivity-preserving schemes.
منابع مشابه
Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملOn positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations
We construct a local Lax-Friedrichs type positivity-preserving flux for compressible Navier-Stokes equations, which can be easily extended to high dimensions for generic forms of equations of state, shear stress tensor and heat flux. With this positivity-preserving flux, any finite volume type schemes including discontinuous Galerkin (DG) schemes with strong stability preserving Runge-Kutta tim...
متن کاملAn efficient nonstandard numerical method with positivity preserving property
Classical explicit finite difference schemes are unsuitable for the solution of the famous Black-Scholes partial differential equation, since they impose severe restrictions on the time step. Furthermore, they may produce spurious oscillations in the solution. We propose a new scheme that is free of spurious oscillations and guarantees the positivity of the solution for arbitrary stepsizes. The...
متن کاملHigh Order Positivity-Preserving Discontinuous Galerkin Methods for Radiative Transfer Equations
The positivity-preserving property is an important and challenging issue for the numerical solution of radiative transfer equations. In the past few decades, different numerical techniques have been proposed to guarantee positivity of the radiative intensity in several schemes, however it is difficult to maintain both high order accuracy and positivity. The discontinuous Galerkin (DG) finite el...
متن کاملNonstandard explicit third-order Runge-Kutta method with positivity property
When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 37 شماره
صفحات -
تاریخ انتشار 1999